Assessment
| ||
LeRobot Tutorial Catalog
- 1. Install Environment
- 2. Configure Parameters
- 3. Remote Control Operation
- 4. Record Dataset
- 5. Visualize Dataset
- 6. Replay Dataset
- 7. Training
- 8. Assessment
8. Assessment
- Note: The following operations are performed inside the container
- Note: You need to navigate to the lerobot directory to execute the following code
8.1 Inference Model Preparation
8.1.1 Compression
After training, the location where the inference model is generated, take "/home/ws/lerobot/outputs/train/act_roarm_m3_test" as an example:
tar czvf act_roarm_m3_test.tar.gz outputs/train/act_roarm_m3_test/checkpoints/100000
Next, select the file and download it to your local device.
8.1.2 Decompression
Select the file and upload it to the "/home/ws/lerobot" directory of the inference environment.
Place the packaged dataset in the inference container, go to the root directory, and decompress it to "/home/ws/lerobot".
cd /home/ws/lerobot && tar xzvf act_roarm_m3_test.tar.gz
Enter the /home/ws/lerobot directory and create a link for the model:
ln -sfn 100000 outputs/train/act_roarm_m3_test/checkpoints/last
8.2 Record Assessment Dataset
Use the function in lerobot/scripts/control_robot.py but with strategy checkpoints as input. For example, run the following command to record 10 assessment sets:
python lerobot/scripts/control_robot.py \
--robot.type=roarm_m3 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a block and put it in the bin." \
--control.repo_id=${HF_USER}/eval_act_roarm_m3_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_roarm_m3_test/checkpoints/last/pretrained_model
Follow the official tutorial to learn about a more in-depth tutorial on controlling a real robot with LeRobot.


