1. **OVERVIEW**

- Support 802.11b/g/n wireless standards.
- Support WAVESHARE-link.
- Support route and bridge modes.
- Support RS485 to Wifi/ Ethernet communication.
- Rich indicator LED: Power, link, RXD, TXD.
- Wide voltage DC 5~36V, support terminal power.
- Support transparent transmission mode, serial command mode, HTTPD Client (GET, PUT and POST), MODBUS, AT command mode.
- Support three types of registration packets: MAC, WAVESHARE-Cloud, custom.
- Support custom heartbeat packet, distributing socket protocol, MODBUS polling function
- Support timeout reset function, timing reset function.
- Support remote upgrade.
- Add hardware watch dog, makes more stable
- Supports free framing and automatic framing on the serial port, for higher forwarding efficiency.
- Support websocket and realize the timing communication for serial port and web page.
- Support web page, serial/network AT command to configure parameters.
- Support one key (press the reload button for more than 5 seconds) to restore factory settings.
- Long distance communication: two serial server can transport for 150m (Test conditions: open line of sight, two WIFI serial servers self-networking, 57600 baud rate, no packet loss during transmission).
- Designed with guide rails for easy installation.
1. Overview ... 2
2. Product Overview .. 7
 2.1. Brief Introduction ... 7
 2.2. Specifications ... 7
3. Networking application .. 8
 3.1. Wireless Networking Configuration ... 8
 3.2. Wireless networking application ... 9
 3.2.1. Wireless networking application(AP) .. 9
 3.2.2. STA Mode ... 10
 3.2.3. AP+STA ... 10
 3.2.4. WiRELESS NETWORKING APPLICATIONS (AP,STA) .. 12
3.3. WIRED NETWORKING ... 14
4. Product function: ... 20
 4.1. Work mode .. 20
 4.1.1. Transparent mode ... 21
 4.1.2. Serial command mode ... 21
 4.1.3. HTTPD Client Mode .. 23
 4.1.4. Modbus TCP <= modbus RTU ... 26
 4.1.5. AT command mode .. 27
 4.2. Socket .. 27
4.3. UART .. 28
 4.3.1. Parameters .. 28
 4.3.2. UART Free framing ... 29
 4.3.3. UART auto-framing mode .. 30
4.4. Synchronous Band Rate (RFC2217) ... 31
4.5. RFC2217 Protocol Description ... 31
4.6. WAVESHARE-Link .. 32
4.7. Heartbeat Packet Function ... 34
4.8. Socket Distribution ... 36
4.9. Timeout Restart .. 38
4.10. Timing Restart .. 39
4.11. Modbus Polling .. 39
4.12. Websocket ... 40
5. Product Parameter setting .. 41
 5.1. Web Page ... 41
 5.1.1. Open the Management Webpage .. 41
 5.1.2. Quick Configure ... 42
 5.1.3. Mode Selection ... 42
 5.1.4. AP Interface Setting .. 43
 5.1.5. STA Interface Setting .. 44
 5.1.6. Application setting ... 44
 5.1.7. Ethernet setting ... 46
 5.1.8. HTTPD Client Mode .. 47
 5.1.9. Device Management .. 48
 5.2. AT command ... 48
 5.2.1. Serial AT Command ... 48
 5.2.2. Command Tableat .. 51
 5.2.3. AT command ... 52
 5.2.4.1. AT+E ... 54
 5.2.4.2. AT+ENTM ... 54
 5.2.4.3. AT+NETP ... 54
 5.2.4.4. AT+UART ... 55
 5.2.4.5. AT+UARTF .. 56
 5.2.4.6. AT+UARTFT .. 56
 5.2.4.7. AT+UARTFL .. 56
 5.2.4.8. AT+TMODE ... 57
 5.2.4.9. AT+WMODE ... 57
 5.2.4.10. AT+WSKEY ... 58
 5.2.4.11. AT+WSSSID ... 59
 5.2.4.12. AT+WSLK ... 59
 5.2.4.13. AT+WEBU ... 60
 5.2.4.14. AT+WAP ... 60
 5.2.4.15. AT+WAKEY ... 61
5.2.4.16. AT+MSLP ... 62
5.2.4.17. AT+WSCAN ... 62
5.2.4.18. AT+TCPLK ... 63
5.2.4.19. AT+TCPDIS ... 63
5.2.4.20. AT+WANN .. 64
5.2.4.21. AT+LANN ... 64
5.2.4.22. AT+TCPETO .. 64
5.2.4.23. AT+MAXSK ... 65
5.2.4.24. AT+TCPB ... 65
5.2.4.25. AT+TCPPTB .. 66
5.2.4.26. AT+TCPADDB ... 66
5.2.4.27. AT+TCPTOB .. 67
5.2.4.28. AT+TCPLKB .. 67
5.2.4.29. AT+EPHY ... 67
5.2.4.30. AT+FUDLX .. 68
5.2.4.31. AT+AABR ... 68
5.2.4.32. AT+DHCPDEN ... 68
5.2.4.33. AT+HIDESSID ... 68
5.2.4.34. AT+DOMAIN .. 69
5.2.4.35. AT+RELD ... 69
5.2.4.36. AT+Z ... 69
5.2.4.37. AT+MID ... 69
5.2.4.38. AT+VER ... 70
5.2.4.39. AT+H ... 70
5.2.4.40. AT+WSQY ... 70
5.2.4.41. AT+HTPMODE ... 70
5.2.4.42. AT+HTTPURL ... 71
5.2.4.43. AT+HTTPTP ... 71
5.2.4.44. AT+HTTPPH ... 72
5.2.4.45. AT+HTTPCN ... 72
5.2.4.46. AT+HTTPUA ... 72
5.2.4.47. AT+HTPSV ... 73
5.2.4.48. AT+HTPTP ... 73
5.2.4.49. AT+HTPURL .. 73
5.2.4.50. AT+HTPHEAD ... 74
5.2.4.51. AT+REGEN .. 74
5.2.4.52. AT+REGTCP ... 74
5.2.4.53. AT+WTPWR .. 75
5.2.4.54. AT+REGCLOUD .. 75
5.2.4.55. AT+REGWAVESHARE ... 75
5.2.4.56. AT+TCPDPEN ... 76
5.2.4.57. AT+HEARTEN ... 76
5.2.4.58. AT+HEARTTP ... 77
5.2.4.59. AT+HEARTDT ... 77
5.2.4.60. AT+HEARTTM ... 77
5.2.4.61. AT+REBOOTEN .. 78
5.2.4.62. AT+REBOOTT .. 78
5.2.4.63. AT+TIMEOUTEN ... 79
5.2.4.64. AT+TIMEOUTT ... 79
5.2.4.65. AT+FAPSTA .. 79
5.2.4.66. AT+HTTPSCEN .. 79
5.2.4.67. AT+MODBPOLLEN .. 80
5.2.4.68. AT+UPDATE .. 80
5.2.4.69. AT+MONITOR .. 81
2. PRODUCT OVERVIEW

2.1. BRIEF INTRODUCTION

RS485 TO WIFI/ETH supports serial port to WIFI function, make the serial port (RS485) connection switch into TCP/IP net interface to realize the bi-direction transparent transmission between serial port and WIFI/Ethernet. Enable serial devices to have TCP/IP network interface function immediately, connect to the network for data communication, greatly extend the communication distance of serial devices, as below:

![Figure 3 AP mode](image)

2.2. SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless parameters</td>
<td></td>
</tr>
<tr>
<td>Wireless standard</td>
<td>802.11 b/g/n</td>
</tr>
<tr>
<td>Frequency range</td>
<td>2.412GHz-2.484GHz</td>
</tr>
<tr>
<td>Transmitting power</td>
<td>802.11b: +19dBm(Max.@11Mbps)</td>
</tr>
<tr>
<td></td>
<td>802.11g: +18dBm(Max.@54Mbps)</td>
</tr>
<tr>
<td></td>
<td>+17dBm(Max.@HT20,MCS7)</td>
</tr>
<tr>
<td></td>
<td>+17dBm(Max.@HT40,MCS7)</td>
</tr>
<tr>
<td></td>
<td>User can configure power</td>
</tr>
<tr>
<td>Receive sensitivity</td>
<td>802.11b: -89dBm(@11Mbps)</td>
</tr>
<tr>
<td></td>
<td>802.11g: -81dBm(@54Mbps)</td>
</tr>
<tr>
<td></td>
<td>802.11n: -73dBm(@HT20,MCS7)</td>
</tr>
<tr>
<td></td>
<td>-71dBm(@HT40,MCS7)</td>
</tr>
<tr>
<td>Hardware parameters</td>
<td></td>
</tr>
<tr>
<td>Data interface</td>
<td>RS485: 300～230.4Kbps</td>
</tr>
<tr>
<td></td>
<td>485 interface (anti surge, anti thunder, overcurrent protection)</td>
</tr>
<tr>
<td></td>
<td>Ethernet: 10Mbps/100Mbps</td>
</tr>
<tr>
<td>Run voltage</td>
<td>DC5～36V</td>
</tr>
<tr>
<td>Run temp</td>
<td>-40℃ ~ 85℃</td>
</tr>
<tr>
<td>Storage temp</td>
<td>-40℃ ~ 125℃</td>
</tr>
<tr>
<td>Size</td>
<td>109.662864.71mm(LWH)</td>
</tr>
<tr>
<td>Wireless network type</td>
<td>Station/AP/AP+Station mode</td>
</tr>
<tr>
<td>Safety</td>
<td>WPA-PSK/WPA2-PSK</td>
</tr>
<tr>
<td>Encryption type</td>
<td>TKIP/AES</td>
</tr>
</tbody>
</table>

www.waveshare.com
Software parameters

<table>
<thead>
<tr>
<th>Run mode</th>
<th>Transparent transmission mode, Protocol transmission mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting command</td>
<td>AT+ command</td>
</tr>
<tr>
<td>Net protocol</td>
<td>TCP/UDP/ARP/ICMP/DHCP/DNS/HTTP</td>
</tr>
<tr>
<td>Max number of connected TCP</td>
<td>24</td>
</tr>
<tr>
<td>User configure</td>
<td>Web server + AT command configure</td>
</tr>
<tr>
<td>Custom software</td>
<td>Support custom customize application software</td>
</tr>
</tbody>
</table>

3. **NETWORKING APPLICATION**

RS485 TO WIFI/ETH supports wireless WIFI and wired Ethernet communication modes, flexible networking and network topology.

3.1. **WIRELESS NETWORKING CONFIGURATION**

RS485 TO WIFI/ETH can configure to be a STA or an AP. Can be set by AT command, web page, as below:

1. **AT command setting:** Set by AT + WMODE, it can be set to AP or STA.

 Example: Set the WIFI serial server to STA mode. After entering the AT command mode, send the following command:

   ```
   Set WIFI serial server to STA mode
   AT+WMODE=STA
   Restart
   AT+Z
   ```

 After restarting, the serial server will work in STA mode.

2. **Web page settings** are as follows:

 For example, log in to the built-in web page of the serial server, enter the mode selection page, and select Station mode (set the WIFI serial server to STA mode), as follows:
3.2. WIRELESS NETWORKING APPLICATION

3.2.1. WIRELESS NETWORKING APPLICATION (AP)

WIFI can do as a AP, other serial port device and PC as a STA can connect the WIFI, also it can connected to user device via RS485, as follows:

The WIFI serial server works in AP mode. The above applications can be set using the following AT commands:

(1) Set the WIFI server to AP mode

AT+WMODE=AP
(2) The parameters of the WIFI serial server in AP mode can be set according to needs or use the default parameters. For example:

AT+WAP=11BGN,RS485 TO WIFI/ETH-TEST,Auto(Optional)
AT+WAKEY=WPA2PSK,AES,12345678(Optional)

(3) Restart
AT+Z

Note:
1. All AT command settings need to enter the AT command mode (for details, please refer to the section “4.3. 1. Serial AT Commands”)
2. After restarting the device, the parameter settings take effect. To refresh the original configuration intableation in memory and restart the operation.

3.2.2. STA MODE

RS485 TO WIFI/ETH do as STA and connect to other APs to Table a wireless network, all STA take the AP as wireless networking centre, mutual communication between STAs is completed through AP forwarding, as below:

![Figure STA mode](image)

3.2.3. AP+STA

RS485 TO WIFI/ETH can support one AP and one STA meanwhile. Enable the AP+STA function, STA and AP interface can be used meanwhile, STA interface connected to the router, and then connected to the server in the internet via TCPB; AP interface can be connected by the phone/ pad (TCPA). So the TCP server, phone /pad can control the device connected to the RS485 TO WIFI/ETH and configure the parameters for the RS485 TO WIFI/ETH. As below:
Figure AP+STA mode

WIFI serial server parameter settings are as follows:

1. Enable AP + STA function of WIFI serial server AT+FAPSTA=on

2. Parameters take effect after resetting the module AT+RELD

3. Set the WIFI serial server to STA mode, the WIFI serial server AP interface is still valid AT+WMODE=STA

4. Set the SSID, encryption mode, and password of the route to be connected (for example, the SSID of the route is: WAVESHARE-WIFI-TESTT, the encryption mode id WPA2PSK, AES, and the password is www.WAVESHARE.cn). As follows:

 AT+WSSSID=WAVESHARE-WIFI-TESTT
 AT+WSKEY=WPA2PSK,AES, www.waveshare.com

5. Set socket A, socket B

 Socket A setting example:
 AT+NETP=TCP,Server,8899,10.10.100.100
 Set the IP and port of the server to be connected.

 Socket B setting example:
 AT+TCPADDB=192.168.1.100
 AT+TCPPTB=18899

6. Restart
 AT+Z

Note:
When the AP + STA function is enabled, the STA port needs to be connected to another router. Otherwise, the STA port will continuously scan the router, which will affect the AP port during scanning, such as data loss. If the user determines that the STA cannot connect to the AP at this time, you can use the command to stop the scanning of the STA port:

AT+STTC=on/off

“on” means to scan the router, “off” means not to scan, this command will not save after restart. AT+FSTTC=on/off

This command can be saved, takes affect after restart.

Web page settings: Login to built-in web pages, enter “STA Interface Setting”, enable AP+STA function.

![STA Interface Setting](image)

After clicking “Apply”, restart to take effect.

3.2.4. WIRELESS NETWORKING APPLICATIONS (AP, STA)

RS485 TO WIFI/ETH can be configured to be a STA and a AP, in theory support 2 wireless interface, one STA and one AP, other STA will connected to the network via this AP.
WIFI serial server parameter settings are as follows:

The WIFI serial server numbered 1 works in STA mode, and the numbered 2 works in AP mode:

1. For No. 1 WIFI serial server, set to STA AT+WMODE=STA
2. For No. 2 WIFI serial server, set to AP AT+WMODE=AP
3. The WIFI serial server No. 1 is connected to the AP (WIFI serial server 2) as a STA. Therefore, the SSID and password to be connected to WIFI serial server 1 are the AP parameters of WIFI serial server 2.

The SSID and password of the No. 2 WIFI serial server can be queried by the following AT command: AT+WAP

AT+WAKEY

Can also be set as required, or use the default parameters. The example of parameters setting of WIFI serial server 2 are as follows:

AT+WAP=11BGN,RS485 TO WIFI/ETH-TEST,Auto(Optional)
AT+WAKEY=WPA2PSK,AES,12345678(Optional)

An example of parameter setting of No. 1 WIFI serial server is as follows (the AP parameters to be connected correspond to the SSID and password of WIFI serial server 2):

AT+WSSSID=RS485 TO WIFI/ETH-TEST
AT+WSKEY=WPA2PSK,AES,12345678

Consistent with WIFI serial server 2 parameters.

4. Restart AT+Z
3.3. WIRED NETWORKING

Related AT command:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WMODE</td>
</tr>
<tr>
<td>2</td>
<td>WSSID</td>
</tr>
<tr>
<td>3</td>
<td>WSKEY</td>
</tr>
<tr>
<td>4</td>
<td>WANN</td>
</tr>
<tr>
<td>5</td>
<td>WSLK</td>
</tr>
<tr>
<td>6</td>
<td>WAP</td>
</tr>
<tr>
<td>7</td>
<td>WAKEY</td>
</tr>
<tr>
<td>8</td>
<td>LANN</td>
</tr>
<tr>
<td>9</td>
<td>FEPHY</td>
</tr>
<tr>
<td>10</td>
<td>FVER</td>
</tr>
</tbody>
</table>

Table Socket Related AT Command

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NETP</td>
</tr>
<tr>
<td>2</td>
<td>TCPB</td>
</tr>
<tr>
<td>3</td>
<td>TCPPTB</td>
</tr>
<tr>
<td>4</td>
<td>TCPADDB</td>
</tr>
</tbody>
</table>

Webpage conFigure are as follows:
The RS485 TO WIFI/ETH serial server provides a 100M Ethernet interface. Through this 100M Ethernet interface, users can realize the interconnection of the three interfaces of WIFI, serial port and Ethernet port. In terms of networking, the RS485 TO WIFI/ETH serial server network port can be set to LAN port and WAN port; at the same time, it supports bridge mode and routing mode to correspond to different specific applications.

3.4. WIRED NETWORKING APPLICATION

3.4.1. WIRED NETWORKING APPLICATIONS (AP+LAN)

When WAVESHARE- RS485 TO WIFI/ETH works in AP mode, other STA devices can connect to this WIFI serial server through RJ 45 or WIFI. In this networking, all device will be distributed a IP in same network segment with WAVESHARE- RS485 TO WIFI/ETH. Application Figure as fellow:
WIFI serial server parameter settings:

(1) Enable Ethernet interface AT+FEPHY=on

(2) The above settings will take effect after restoring factory settings AT+RELD

AT + RELD command does not restore the above settings.

(3) Set WAVESHARE- RS485 TO WIFI/ETH to AP AT+WMODE=AP

(4) For the LAN parameters of the serial server, can use the default parameters or modify the IP address (DHCP gateway) and subnet mask of the serial server. Here are the default parameters:

\[\text{AT+LANN}=10.10.100.254,255.255.255.255 \]

(5) Restart

3.4.2. WIRED NETWORKING APPLICATIONS (AP+WAN)

WAVESHARE- RS485 TO WIFI/ETH works in AP mode, set the Ethernet interface to WAN, connected to the router that can search the internet, and enable the DHCP. Now WAVESHARE- RS485 TO WIFI/ETH works as a second grade router, PC and pad connect to the AP(WAVESHARE- RS485 TO WIFI/ETH) can be online, the default AP is WAVESHARE- RS485 TO WIFI/ETH_xxxx, no encryption, 000000000000which can be setting by web page or AT command.

After the RS485 TO WIFI/ETH connects to the AP and get IP address from AP(192. 168 .1. 1). The RS485 TO WIFI/ETH can Table a subnet(default 10.10.100.254). The device on the Ethernet interface is assigned an address by the serial server, such as 10.10.100. 100 in the below Figure:
RS485 TO WIFI/ETH

WIFI serial server parameter settings:

(1) Enable Ethernet interface AT+FEPHY=on

(2) Set the working mode of Ethernet to WAN AT+FVEW=enable

(3) The above settings will take effect after restoring factory settings AT+RELD

AT + RELD command does not restore the above settings.

(4) RS485 TO WIFI/ETH works in AP mode, enable DHCP(Default) AT+WMODE=ap

AT+DHCPDEN=on

(5) For security reasons, can modify the AP name and encryption parameters (optional)

AT+WAP=11BGN,B2-WIFI-TEST,Auto

AT+WAKEY=WPA2PSK,AES,www.waveshare.com

(6) Can keep the default or set LAN parameters of serial server, IP address (DHCP gateway) and subnet mask (optional)

AT+LANN=192.168.2.1,255.255.255.0

Note: It is necessary to ensure that the LAN IP address set cannot be on the same network segment as the WAN IP address obtained by the serial server from the AP!

(7) Restart

3.4.3. WIRED NETWORKING APPLICATIONS (ROUTE)

RS485 TO WIFI/ETH works as a STA, in router mode/software is N-Ve). Connected to the AP and obtained an IP address from the AP such as 192.168.1.101 in the below Figure. RS485 TO WIFI/ETH Tables a subnet (default 10.10.100.254) which distributes the IP address to the devices that connect to its Ethernet interface. As below, PC1 in the subnet, for RS485 TO WIFI/ETH works in router mode, PC1 can connected to the PC2, but PC2 can not connected to PC1.
RS485 TO WIFI/ETH

Figure Router Application

WIFI serial server parameter settings:

1) Set the serial server software version to N-Ver
 AT+FVER=n

2) Enable Ethernet interface
 AT+FEPHY=on

3) Reset the module, the setting will take affect
 AT+RELD
 AT + RELD command does not restore the above settings.

4) Set the working mode to STA AT+WMODE=STA

5) Set the SSID and password of the route to be connected (according to the actual parameters of the route)
 For example: AT+WSSSID=WAVESHARE-WIFI-TESTT
 AT+WSKEY=WPA2PSK,AES,www.waveshare.com

6) Set LAN parameters of serial server, IP address (DHCP gateway) and subnet mask Query the IP obtained by the serial server from the AP:
 AT+WANN
 Set the LAN parameters of the serial server to ensure that the LAN IP address cannot be on the same network segment as the WAN IP address obtained by the serial server from the AP. Since this example is not on a network segment, can keep the default:
 AT+LANN=10.10.100.254,255.255.255.0(Optional)

7) Restart.

Web page setting: Log in to the built-in web page of RS485 TO WIFI/ETH, enter the page of Ethernet setting, and set the Ethernet Mode to “n” in the Ethernet mode settings.

As shown below:
3.4.4. WIRED NETWORKING APPLICATIONS (BRIDGE)

RS485 TO WIFI/ETH works as a STA, and works in bridge mode (software is Z-Ver). After connecting to AP, device connected to the Ethernet interface will get an IP address from AP such as 192.168.1.101 in below Figure. In the whole network, RS485 TO WIFI/ETH works as a transparent device, PC1 and PC2 can communicate to each other without any limited. But if you want to realize the communication between the RS485 TO WIFI/ETH and other devices, you need to set a static LAN IP address such as 192.168.1.10.

WIFI serial server parameter settings:

(1) Set the serial server software version to Z-Ver

 AT+FVER=z

(2) Enable Ethernet interface
AT+FEPHY=on

(3) Reset the module, the setting will take affect
AT+RELD

AT + RELD command does not restore the above settings.

(4) Set the working mode to STA
AT+WMODE=STA

(5) Set the SSID and password of the route to be connected
For example: AT+WSSID=WAVESHARE-WIFI-TESTT
AT+WSKEY=WPA2PSK,AES,www.waveshare.com

(6) Set the LAN parameters of serial server, IP address (DHCP gateway) and subnet mask
AT+LANN=192.168.1.10,,255.255.255.0

(7) Restart.

Web page setting: Log in to the built-in web page of RS485 TO WIFI/ETH, enter the page of Ethernet setting, and set the Ethernet Mode to “z” in the Ethernet mode settings.

As shown below:

![Ethernet Mode Setting](image)

Figure Ethernet Mode Setting

4. PRODUCT FUNCTION.

4.1. WORK MODE
WSHARE- RS485 TO WIFI/ETH serial server has five working modes: transparent mode, serial command mode, HTTPD Client mode, Modbus TCP <= Modbus RTU mode, AT command mode. Except for the AT command mode, the switching between the other modes can be set through the WSHARE- RS485 TO WIFI/ETH built-in web page (please refer to the relevant section of "Mode Selection" in this manual) or the AT command (please refer to the "AT + TMODE" section);

The first three modes can send “+++” and “a” successively through the serial port. WSHARE- RS485 TO WIFI/ETH will return the confirmation codes “a” and “+ ok” in order to switch to the AT command mode. AT + ENTM can return WSHARE- RS485 TO WIFI/ETH from AT command mode to the original working mode. For details, please refer to the related chapter of “Serial AT Command”.

4.1.1. TRANSPARENT MODE

WSHARE- RS485 TO WIFI/ETH supports transparent transmission mode. Under this mode, the data needs to be sent and received will be transported transparently between the serial port and WIFI/Ethernet, no analyzing, minimize the complexity of use.

4.1.2. SERIAL COMMAND MODE

In this mode, when WSHARE- RS485 TO WIFI/ETH works in UDP client or TCP client, allow sending serial data to different servers.

The MCU sends data packets according to the following Table. After the WIFI serial server has finished parsing, it only sends n bytes of data to the destination address. When data is returned, the data is output directly from the serial port without parsing.
Table Serial command mode

<table>
<thead>
<tr>
<th>Header</th>
<th>Length</th>
<th>Function code</th>
<th>Reserved parameter</th>
<th>Destination port</th>
<th>Destination address</th>
<th>Data</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2(n+m+5)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>m</td>
<td>n</td>
<td>1</td>
</tr>
</tbody>
</table>

Header:

0x55 0xaa

Length:
The total number of bytes from function code (included) to parity (do not included), the high is in front.

Function code:

- Bit0: (UDP: 0 ; TCP: 1)
- Bit1: (long connection: 0) Note: Only long connections are currently supported.
- Bit2: (IP: 0; domain name: 1)
- Bit7: (Simple protocol: 0; Full protocol: 1) Note: Only simple protocols are currently supported.

Note:
- For Bit1, long connection, then after sending data, the connection will remain until the target address is changed again.
- For Bit2, it indicates whether the destination address is IP or domain name. If it is IP, the destination address is 4 bytes; if it is a domain name, the length of the destination address is the length of the entire domain name string (where the last byte of the destination address is 0x00, is the end of the string, the length of the domain name is indefinite)
- For Bit7, under the simple protocol, the reply frame contains only data; under the full protocol, the reply frame will fail to send, waiting for timeout, and the frame Table at of the response device IP under UDP broadcast.

Reserved parameter:

First byte: long connection, 0x00.

Second byte: reserved.

Destination port:

Low byte first, such as port 33, here is 21 00 .

Destination address:
If it is IP, it is 4 bytes. For example, 192.168.0.133 means 85 00 A8 C0; if it is a domain name, the address length is indefinite and ends with "\0".

Data:
Variable length, up to 1000 bytes

Parity:
From the function code, to the byte before the parity, add. The following are examples of specific applications: Send data: 55 aa 00 0a 00 00 00 21 00 85 00 A8 C0 01 0f
Length type 00 0a: Length: n+m+5, here is 10
Function code 00: UDP mode
Destination IP address 85 00 A8 C0: 192.168.0.133
Data 00: Length is 1,
Parity: 0x00+0x00+0x00+0x21+0x00+0x85+0x00+0xA8+0xC0+0x01=0x0f

4.1.3. HTTPD CLIENT MODE
The HTTPD Client mode supports three HTTP request methods: POST, PUT, and GET. After setting the specific content of the HTTP header through the AT command or the web page, each time data is sent, the WIFI serial server will automatically encapsulate the sent data into HTTP protocol data and send it to the designated HTTP server. The data received from the server will be directly transmitted to the serial port without any processing.

The following are specific application examples:

First set HTTP parameters through AT command:

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HTPMODE</td>
<td>New and old, HTTP header setting mode switch(HTTPD Client)</td>
</tr>
<tr>
<td>2</td>
<td>HTTPURL</td>
<td>Old setting/query HTTP server IP and port</td>
</tr>
<tr>
<td>3</td>
<td>HTTPTP</td>
<td>Old setting/query HTTP requesting type</td>
</tr>
<tr>
<td>4</td>
<td>HTTPPH</td>
<td>Old setting/query HTTP protocol header path</td>
</tr>
<tr>
<td>5</td>
<td>HTTPCN</td>
<td>Old setting/query HTTP protocol header Connection</td>
</tr>
<tr>
<td>6</td>
<td>HTTPUA</td>
<td>Old setting/query HTTP protocol header User-Agent</td>
</tr>
<tr>
<td>7</td>
<td>HTTPSV</td>
<td>New setting/query server address and IP(HTTPD Client)</td>
</tr>
<tr>
<td>8</td>
<td>HTTPTP</td>
<td>New setting/query requesting way(HTTPD Client)</td>
</tr>
<tr>
<td>9</td>
<td>HTTPURL</td>
<td>New setting/query requesting path(HTTPD Client)</td>
</tr>
<tr>
<td>10</td>
<td>HTTPHEAD</td>
<td>New setting/query HTTP header(HTTPD Client)</td>
</tr>
<tr>
<td>11</td>
<td>HTTPSCEN</td>
<td>Setting/query HTTPD Client connection mode(long/short)</td>
</tr>
<tr>
<td>12</td>
<td>HTTPSCT</td>
<td>Setting/query HTTPD Client short connection timeout(3-65535s)</td>
</tr>
</tbody>
</table>
If the data sent is 1234, then you will receive the following data on port 80 of test.WAVESHARE.cn.

POST /2.php? HTTP /1.1
Connection:keep-alive
User-Agent:lwip1.3 .2
Content- Length:4
Host:test.WAVESHARE.cn:80

1234

If the HTTP type is GET, the data received on port 80 of test.WAVESHARE.cn is

GET /1.php? data= 1234 HTTP /1.1
Connection:keep-alive
User-Agent:lwip1.3 .2
Host:test.WAVESHARE.cn:80

When the request method is POST or PUT, the data of the serial port will be added after the HTTP protocol header; when the request method is GET, the data of the serial port will be added after the protocol header path.

Users can customize the content of the HTTP header in the new version of the definition method, and can add, delete, and modify the content of each HTTP header according to their own needs. If the HTTP request type is POST / PUT, WAVESHARE- RS485 TO WIFI/ETH will automatically add Content-Length. The setting commands include "AT +HTPMODE, AT +HTPSV, AT +HTPTP, AT +HTPURL, AT +HTPHEAD". For specific command setting procedures, please refer to the “AT command” chapter. Similarly, there are corresponding settings pages in the web page.

Note: The above definition method is called the old definition method. In the new version of the setting method, a new HTTP header definition method is added. If you use the AT command to set the HTTP header, please use "<< CRLF >>" instead of carriage return and line feed. There is no need to consider carriage return when setting the built-in web page. The web page settings are as follows:

(1) Set HTTPD request type:
Figure HTTPD Client requesting type

(2) In “Application Setting”, select Httpdclient Mode as long/short.
If set to short connection mode, timeout can be set within the range of 3-65535 (s).

AT command setting:

1. Setting/query the Httpdclient Mode (long/short), for example:
 AT+HTTPSCEN=short

2. Setting/query the timeout of short connection mode, for example:
 AT+HTTPSCT=3

4.1.4. MODBUS TCP <=> MODBUS RTU

This serial server supports Modbus TCP to Modbus RTU (does not support Modbus ASCII); the network parameters of the module should correspond to the network parameters of the application software. The TCP server corresponds to the TCP client and the port must be the same. For the working mode, select Modbus TCP <=> Modbus RTU.
Setting by AT command:

AT+TMODE=modbus

Setting by web page:

4.1.5. AT COMMAND MODE

Under AT command, send AT command to query the current status and parameters of the W610.

For details on the method and timing for entering and exiting the AT command mode, refer to the relevant section of "4.3. Command Configuration" in this manual.

4.2. SOCKET

Socket A includes TCP Server, TCP Client, UDP Server, UDP Client and socket B supports TCP Client and UDP client.

When socket A in TCP server, at most supports 24 TCP client to connect. In multi-TCP link connection mode, data transmitted from TCP will be forwarded to the serial port one by one. The data coming from the serial port will be copied into multiple copies, and one copy will be forwarded on each TCP link. The specific data flow chart shows:
Socket A settings: AT+NETP/AT+TCPTO/AT+TCPLK/AT+TCPDIS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NETP Setting / Query TCPA's network protocol parameters</td>
</tr>
<tr>
<td>2</td>
<td>TCPLK Query whether the TCP link is established</td>
</tr>
<tr>
<td>3</td>
<td>TCPTO Setting/query TCP timeout</td>
</tr>
<tr>
<td>4</td>
<td>TCPDIS Connect / Disconnect TCP (only valid when TCP Client)</td>
</tr>
</tbody>
</table>

Socket B settings: AT+TCPB/AT+TCPPTB/TCPADDB/TCPTOB/TVPGBK/TCPDIS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TCPB Enable/disable TCPB</td>
</tr>
<tr>
<td>2</td>
<td>TCPPTB Setting/query TCPB port number</td>
</tr>
<tr>
<td>3</td>
<td>TCPADDB Setting/query TCPB server address</td>
</tr>
<tr>
<td>4</td>
<td>TCPTOB Setting/query TCPB timeout</td>
</tr>
<tr>
<td>5</td>
<td>TCPLKB Query whether the TCPB link is established</td>
</tr>
<tr>
<td>6</td>
<td>TCPDIS Connect / Disconnect TCPB</td>
</tr>
</tbody>
</table>

4.3. UART

4.3.1. PARAMETERS

<table>
<thead>
<tr>
<th>Item</th>
<th>parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 345600, 460800</td>
</tr>
<tr>
<td>Data</td>
<td>5, 6, 7, 8</td>
</tr>
<tr>
<td>Stop</td>
<td>1, 2</td>
</tr>
<tr>
<td>Parity</td>
<td>None, Even, Odd</td>
</tr>
<tr>
<td>485</td>
<td>NFC: no hardware control</td>
</tr>
</tbody>
</table>
Webpage setting:

Log in the build-in webpage, under the ‘‘Application Setting’’ page, as below:

![Webpage setting](image)

AT command:

If the user needs to modify the baud rate of the RS485 TO WIFI/ETH to 115200bps, as follows:

\[
\text{AT+UART=} 115200,8,1,\text{None},\text{NFC}
\]

4.3.2. UART FREE FRAMING

Take sent data from serial device to the RS485 TO WIFI/ETH as an example to show the steps of the free framing: if \(n \) is the free frame interval, unit is ms, when \(T_1 > n, T_2 < n, T_3 < n, T_4 < n, T_5 < n \) and \(T_6 > n \), then take byte1-byte5 as a frame, as bellow:

![Switching command mode order](image)

Default interval between 2 bytes is 10ms, that means if the time more than 10ms, this frame will be over. And interval can change into 50ms to meet the custom’s requirement, setting command are as follows:
AT+FUARTTE=normal

After setting, restore to the factory default value will enable it.

AT+RELD

Note: AT+RELD can not restore the above setting.

After testing, if the interval set to be 10 ms, and small amount of data, the delay time of the loopback from WIFI ->UART->WIFI is about 40~50ms.

But if the interval is 10ms and the MCU can not confer to send the next bytes in 10ms, and the serial data might be breaking.

If you want to restore the default interval -- 10ms, using the below AT command:

AT+FUARTTE=fast

Also need to restore to enable it.

For more AT commands, please refer to “AT command” in this manual.

4.3.3. UART AUTO-FRAMING MODE

For a fixed-length data frame on the serial port, you can turn on the UART auto-frame function and set the auto-frame trigger time and the trigger frame length. WAVESHARE-RS485 TO WIFI/ETH will automatically compose the data received from the serial port and forward it to the network.

1. Auto framing trigger frame length: WAVESHARE-RS485 TO WIFI/ETH receives the specified number of bytes from the serial port, forms a data frame, and forwards it to the network.

2. Auto framing trigger time: if the data received from the serial port is less than the auto framing trigger frame length within the trigger time, WAVESHARE-RS485 TO WIFI/ETH will forward the received data to the network.

The automatic framing time is calculated from the time when the WIFI serial server receives the first byte from the serial port. As shown below:
4.4. SYNCHRONOUS BAND RATE (RFC2217)

Synchronous baud rate is named RFC2217. WAVESHARE Similar RFC2217 make adjustments on the basis of RFC2217 protocol to improve accuracy of transmission. Enable the baud rate function of WIFI serial server via AT command:

AT+AABR=on

This command takes effect immediately and does not need to be restarted. After restarting, the WIFI serial server will restore the previous baud rate.

4.5. RFC2217 PROTOCOL DESCRIPTION

Protocol length is 8 bytes. And values taken for example is in HEX:

<table>
<thead>
<tr>
<th>Name</th>
<th>Packet Header</th>
<th>Baud Rate</th>
<th>Bits parameter</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Explanation</td>
<td>reduce</td>
<td>High is in front, three bytes</td>
<td>data bit, stop bit,</td>
<td>Remove 4 bits of header and</td>
</tr>
<tr>
<td></td>
<td>misjudgment</td>
<td>which bit,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

www.waveshare.com
RS485 TO WIFI/ETH

<table>
<thead>
<tr>
<th>Bit #</th>
<th>Explanation</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:0</td>
<td>Data bit selection</td>
<td>00</td>
<td>5 bits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01</td>
<td>6 bits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>7 bits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>8 bits</td>
</tr>
<tr>
<td>2</td>
<td>Stop Bit</td>
<td>00</td>
<td>1 bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01</td>
<td>2 bits</td>
</tr>
<tr>
<td>3</td>
<td>Parity Enable</td>
<td>00</td>
<td>Disable Parity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01</td>
<td>Enable Parity</td>
</tr>
<tr>
<td>5:4</td>
<td>Parity Type</td>
<td>00</td>
<td>ODD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01</td>
<td>EVEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Mark</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>Clear</td>
</tr>
<tr>
<td>8:6</td>
<td>NC</td>
<td>000</td>
<td>0</td>
</tr>
</tbody>
</table>

Serial parameter bit:

4.6. WAVESHARE-LINK

When works in AP mode, RS485 TO WIFI/ETH will open a UDP port which number is 49000 to receive the WAVESHARE-link. Connected directly to the WIFI of the RS485 TO WIFI/ETH, phone query the SSID and set the router’s SSID and password via the command under the UDP. Then the RS485 TO WIFI/ETH will restart automatically and connect the router, now it works in STA mode.

Protocol Tableat description:

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Packet Header</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Length</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Command</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Parity</td>
<td>1</td>
</tr>
</tbody>
</table>
RS485 TO WiFi/ETH

Setting Command

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Packet Header</td>
<td>1</td>
<td>Fixed value: 0xFF</td>
</tr>
<tr>
<td>2 Length</td>
<td>2</td>
<td>Number of all bytes after length (excluding length) and before parity (excluding parity)</td>
</tr>
<tr>
<td>3 Command</td>
<td>1</td>
<td>Command type, the reply command corresponding to the query command is 0x81</td>
</tr>
<tr>
<td>4 Number of APs</td>
<td>1</td>
<td>Number of APs searched</td>
</tr>
<tr>
<td>5 SSID1</td>
<td>Indefinite length</td>
<td>SSID of route 1</td>
</tr>
<tr>
<td>6 Terminator</td>
<td>1</td>
<td>Terminator for SSID of Router 1, fixed value is 0x00.</td>
</tr>
<tr>
<td>7 Signal strength</td>
<td>1</td>
<td>The signal strength of router 1 network, ranges from 0 to 100, and the corresponding actual value is 0% to 100%.</td>
</tr>
<tr>
<td>8 Terminator</td>
<td>2</td>
<td>Terminator for signal strength 1, 0x0D, 0x0A.</td>
</tr>
<tr>
<td>M SSIDn</td>
<td>Indefinite length</td>
<td>SSID of route n</td>
</tr>
<tr>
<td>M+1 Terminator</td>
<td>1</td>
<td>Terminator for SSID of Router n, fixed value is 0x00.</td>
</tr>
<tr>
<td>M+2 Signal strength</td>
<td>1</td>
<td>The signal strength of router n network, ranges from 0 to 100, and the corresponding actual value is 0% to 100%.</td>
</tr>
<tr>
<td>M+3 Terminator</td>
<td>2</td>
<td>Terminator for signal strength n, 0x0D, 0x0A.</td>
</tr>
<tr>
<td>M+4 Parity</td>
<td>1</td>
<td>The accumulated sum of all bytes after the header (excluding the header) and before the parity (excluding the parity).</td>
</tr>
</tbody>
</table>

For example:

Mobile phone sends to WiFi serial server (hexadecimal number): FF 00 01 01 02

WiFi serial server returns to mobile phone (hexadecimal number): FF 00 14 81 02 54 45 53 54 31 00 40 0D 0A

54 45 53 54 32 00 37 0D 0A 1F

Explanation: The mobile phone sends a query command to the WiFi serial server to query the inTableation of the router. The inTableation returned by the WiFi serial server to the mobile phone is: there are 2 routers, the SSID of router 1 is "TEST1" and the signal strength is 64%; the SSID of router 2 is "TEST2" and the signal strength is 55%.

Note: The router inTabletion returned by the WiFi serial server is sorted according to the signal strength.

Table Setting Command

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Packet Header</td>
<td>1</td>
<td>Fixed value: 0xFF</td>
</tr>
<tr>
<td>2 Length</td>
<td>2</td>
<td>Number of all bytes after length (excluding length) and before parity (excluding parity)</td>
</tr>
</tbody>
</table>
RS485 TO WIFI/ETH

<table>
<thead>
<tr>
<th>Command</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>Command type, 0x02 is the setting command.</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Default is 0x00</td>
</tr>
<tr>
<td>5</td>
<td>Indefinite length</td>
<td>SSID of route</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>SSID terminator, fixed values are 0x0D and 0x0A.</td>
</tr>
<tr>
<td>7</td>
<td>Indefinite length</td>
<td>Password of route</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>The accumulated sum of all bytes after the header (excluding the header) and before the parity (excluding the parity).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Header</td>
<td>1</td>
<td>Fixed value: 0xFF</td>
</tr>
<tr>
<td>Length</td>
<td>2</td>
<td>Number of all bytes after length (excluding length) and before parity (excluding parity)</td>
</tr>
<tr>
<td>Command</td>
<td>1</td>
<td>Command type, 0x82 is the reply command corresponding to the setting command.</td>
</tr>
<tr>
<td>Parity</td>
<td>1</td>
<td>The parity result of the SSID. If the SSID can be found, the corresponding value is 0x01. If not, the value is 0x00.</td>
</tr>
<tr>
<td>Parity</td>
<td>1</td>
<td>The parity result of the password. If the password is in the correct Tableat, the value is 0x01. If it is incorrect, the value is 0x00.</td>
</tr>
<tr>
<td>Parity</td>
<td>1</td>
<td>The accumulated sum of all bytes after the header (excluding the header) and before the parity (excluding the parity).</td>
</tr>
</tbody>
</table>

For example:

Mobile phone sends to WIFI serial server (hexadecimal number): FF 00 0F 02 00 54 45 53 54 31 0D 0A 31 32 33 34 35 36 CE

WIFI serial server returns to mobile phone (hexadecimal number): FF 00 03 82 01 01 87

Explanation: The mobile phone sends a setting command to the WIFI serial server, sets the SSID to "TEST1" and the password to "123456". The inTableation returned by the WIFI serial server to the mobile phone is:

There is a network with SSID "TEST1" and the password Tableat is correct.

4.7. HEARTBEAT PACKET FUNCTION

In the network transparent transmission mode, the user can choose to enable the custom heartbeat packet function. The heartbeat packet can be sent to the network or serial device:

www.waveshare.com
The main purpose of sending to the network is to maintain a connection with the server, and at the same time let the server that is idle for a long time (do not send data to the server for a long time) to detect whether the current connection status is valid.

In applications where the server sends fixed query commands to the device, in order to reduce frequent interactions, users can choose to send heartbeat packets (query commands) to the serial device instead of sending query commands from the server.

Enable the custom heartbeat packet function. AT command settings are as follows:

(1) Enable heartbeat packet function AT+HEARTEN=on

(2) Set the sending direction (NET or COM) of the heartbeat packet, for example, set the heartbeat packet to be sent to the network.

AT+HEARTTP=NET

(3) Set the heartbeat packet data (maximum 40 bytes). For example, to set the data to the string www.waveshare.com, you need to first convert the string to hex 7777772E7573722E636E.

AT+HEARTDT=7777772E7573722E636E

(4) Set the interval for sending heartbeat packets. The setting range is 1-65535s, and the default is 30s. For example, set the sending interval to 30 seconds.

AT+HEARTTM=30
Then need to set up network connections such as socket A and socket B, please refer to section 2.4. After completing the settings, restart the serial server. After socket A or socket B is connected to the server, if there is no data transmission within 30 seconds, the serial server will send the string www.waveshare.com to the server.

AT commands:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HEARTEN</td>
</tr>
<tr>
<td>2</td>
<td>HEARTTP</td>
</tr>
<tr>
<td>3</td>
<td>HEARTDT</td>
</tr>
<tr>
<td>4</td>
<td>HEARTTM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEARTEN</td>
<td>Query / Se whether to enable the heartbeat packet function</td>
</tr>
<tr>
<td>HEARTTP</td>
<td>Query / Set heartbeat packet sending mode</td>
</tr>
<tr>
<td>HEARTDT</td>
<td>Query / Set heartbeat packet data</td>
</tr>
<tr>
<td>HEARTTM</td>
<td>Query / Set heartbeat packet sending interval</td>
</tr>
</tbody>
</table>

4.8. SOCKET DISTRIBUTION

Users are allowed to send data to appointed socket connection and take the RS485 TO WIFI/ETH packaging the data from the net according to the protocol send to serial device if enabling the socket distribution under the transparent transport.

Users’ MCU send data package according to the socket protocol and RS485 TO WIFI/ETH will parse the data package. If correspond with the protocol, it will be sent to the appointed socket; if not, it will return related error code and does not send it.

1) Data Table at from serial device to module

MCU send data package according the below Table at, module parse and send “n”bytes data to the appointed socket connection. When the data returned, no parse and output from the serial directly.

<table>
<thead>
<tr>
<th>header</th>
<th>Length</th>
<th>Parameters</th>
<th>Data</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xAA</td>
<td>0xFD</td>
<td>0x55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2 (n+2)</td>
<td>2</td>
<td>n</td>
<td>1</td>
</tr>
</tbody>
</table>

Header: 0xAA 0xFD 0x55

Length: the total number of bytes from parameters(included) to parity (do not included), the high is in front

Parameters: the first byte: common parameters, it is connecting number(socket A and socket B); The data returned by Socket A is 0x61, and the data returned by Socket B is 0x62.

The second byte: reserved parameters, the seventh bit distinguish the data from net or the module.(1: returned from module; 0: returned from the net)
Data: if the net data, copy the data to the right position, length can be modify, length less than 4096 bytes.

If the RS485 TO WIFI/ETH data, return the operating code, details are as follows:

<table>
<thead>
<tr>
<th>Return code</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x00</td>
<td>Header error</td>
</tr>
<tr>
<td>2</td>
<td>0x01</td>
<td>Length error</td>
</tr>
<tr>
<td>3</td>
<td>0x02</td>
<td>Parameters error</td>
</tr>
<tr>
<td>4</td>
<td>0x04</td>
<td>Parity error</td>
</tr>
<tr>
<td>5</td>
<td>0x10</td>
<td>Send failed(parameters is right but send failed)</td>
</tr>
</tbody>
</table>

Parity: from the parameters (included) to parity (not include), add and take the last bytes as parity. Below is detailed application:

AA FD 55 00 03 61 00 CC 2D (HEX)

Length: 00 04: the length is 4

Parameters 61 00: 61 — data from socket A
00 — net to serial

Data CC: the data from the socket A

Sum parity:61+00+CC= 2D

Below, we take socket A as example, serial send abc to socket A, socket A return 123 to the serial device:
AT command to enable the socket:

AT+TCPDPEN =on

Others, if more function for the socket A and socket B, please refer to the 2.4.

4.9. TIMEOUT RESTART

Under the transparent transmission mode, enable the timeout restart function. If the RS485 TO WIFI/ETH no WIFI connection or connected but no communication in set time, RS485 TO WIFI/ETH will restart.

(1)Enable this function:

AT+TIMEOUTEN=on
(2) Setting the time, from 60~65535s default is 3600s, e.g. 100s

AT+TIMEOUTT=100

After setting, restart the RS485 TO WIFI/ETH.

For example: AT+TIMEOUTT=100, if no connection or connected but no communication within 100s, module will restart; if there is connection or communication in 100s, the time will be cleared and regain to time.

<table>
<thead>
<tr>
<th>NO.</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TIMEOUTT</td>
<td>Query/ setting the time for restart timeout</td>
</tr>
</tbody>
</table>

4.10. TIMING RESTART

"Timing restart" is equivalent to "restart after the set time". In the non-serial port command mode, when this function is enabled, the module uses the internal clock for timing. After reaching the set time, the module will be forced to restart.

Related AT command:

1) Enable this function:

 AT+REBOOTEN=on

2) Setting the time, can be modified from 1~720h, default is 24h, e.g, 200h

 AT+REBOOTT=200

The parameter setting is completed, takes effect after the module is restarted, and the module will restart every 200h.

<table>
<thead>
<tr>
<th>NO.</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REBOOTEN</td>
<td>Enable/disable timing restart</td>
</tr>
<tr>
<td>2</td>
<td>REBOOTT</td>
<td>Query/setting time for timing restart</td>
</tr>
</tbody>
</table>

4.11. MODBUS POLLING

(1) Setting by web page
RS485 TO WIFI/ETH

(2) Setting by AT command:

Enable/disable Modbus polling function, enable this function:

AT+MODBPOLEN=on/off

Set the polling interval (50 ~ 65535) (ms), taking 200ms as an example:

AT+MODBPOLLT=200

4.12. WEBSOCKET

RS485 TO WIFI/ETH supports websocket server. Instead of the ways such as HTTP GET, POST, PUT, and is faster. Providing the related websocket testing webpage for user to testing, details are as below:(10.10.100.254/websocket.html)

Click the “Connect” to realize a Websocket connection, then serial and webpage can transport data with each other. The Websocket server of the RS485 TO WIFI/ETH supports 8 clients to connect at most.
People make webpage application and have high requirement for the respond speed can contact us.

Note: this function uses the 8000 port of the RS485 TO WIFI/ETH.

5. PRODUCT PARAMETER SETTING

WAVESHARE-RS485 TO WIFI/ETH supports two ways to set the parameters: AT command and webpage. For the setting of AT commands, please refer to the “AT Commands” section of this document; this chapter mainly describes the Web setting methods.

5.1. WEB PAGE

First time using the RS485 TO WIFI/ETH, you can configure it via webpage. PC connects to AP interface of RS485 TO WIFI/ETH. Default SSID, IP and username, password are as follows:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSID</td>
<td>RS485 TO WIFI/ETH_xxxx</td>
</tr>
<tr>
<td>IP address</td>
<td>10.10.100.254</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Username</td>
<td>admin</td>
</tr>
<tr>
<td>Password</td>
<td>admin</td>
</tr>
</tbody>
</table>

5.1.1. OPEN THE MANAGEMENT WEBPAGE

Connecting the RS485 TO WIFI/ETH with the wireless net card of the PC, SSID is RS485 TO WIFI/ETH_xxxx. Enter the browser, fill the 10.10.100.254 (default IP address) and enter. Then fill the username and password (both are: admin) and enter the webpage.

Management webpage supports English, setting on the top right.

There are nine webpage in it, including: quick configure, mode selection, AP interface setting, STA interface setting, Application setting, Ethernet setting, HTTPD client mode, Advance and Device management.
5.1.2. QUICK CONFIGURE

This webpage shows a way to quickly configure the RS485 TO WIFI/ETH for user. Configure the parameters and restart to make the RS485 TO WIFI/ETH work normal. Of course, please click the respond webpage to configure.

5.1.3. MODE SELECTION

You may configure the Uart-WIFI module wifi mode and data transfer mode.
In the first page choose the work mode of the RS485 TO WIFI/ETH: AP/ STA.

Data transfer mode including “transparent mode”, “serial command mode”, “HTTPD client mode”, “modbus TCP and modbus RTU”.

5.1.4. AP INTERFACE SETTING

RS485 TO WIFI/ETH supports AP interface with which can management the RS485 TO WIFI/ETH easier and can realize the networking. Webpage is as above, including SSID, security mode and LAN setup. Both supports user defined.
5.1.5. STA INTERFACE SETTING

RS485 TO WIFI/ETH supports STA interface and can access to other wireless network, setting as above.

There are three lists in this webpage, the Tableer one is STA interface parameters, including the SSID of the AP to connect, security mode and others. Second one is AP+STA, click to choose enable or not. The latter one is WAN connection type, including DHCP and Static IP.

5.1.6. APPLICATION SETTING

Application settings are settings for WIFI to RS485 parameters, including: setting of serial port parameters, automatic framing settings, Ethernet function settings, registration package settings and network protocol settings.
RS485 TO WIFI/ETH

Wifi-Uart Setting

You could configure the Uart parameters and network parameters of the wifi-uart application.

<table>
<thead>
<tr>
<th>Uart Setting</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baudrate</td>
<td>57600</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Stop</td>
<td>1</td>
</tr>
<tr>
<td>Baudrate adaptive (RFC2217)</td>
<td></td>
</tr>
</tbody>
</table>

UART AutoFrame Setting

<table>
<thead>
<tr>
<th>UART AutoFrame</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Registered Package Setting

<table>
<thead>
<tr>
<th>Registered Package Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upload Manner: first: Module send registration packet when connection established; every: Send registration packet every time when module send data

Custom heartbeat packet settings

<table>
<thead>
<tr>
<th>Custom Heartbeat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Socket Distribution settings

<table>
<thead>
<tr>
<th>Socket Distribution</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modbus Polling settings

<table>
<thead>
<tr>
<th>Modbus Polling</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Httpclient Mode settings

<table>
<thead>
<tr>
<th>Httpclient Mode</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

485 Switch Settings

<table>
<thead>
<tr>
<th>485 selector switch</th>
<th>on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching interval (1-350)</td>
<td>3</td>
</tr>
</tbody>
</table>

www.waveshare.com

45 / 81

www.waveshare.com/wiki
Description:

Network setting: 4 modes can be set on the network side as TCP server, TCP client, UDP server and UDP client.

When RS485 TO WIFI/ETH is configured as a UDP server, RS485 TO WIFI/ETH will remember the last UDP client and communicate with the last UDP client. The UDP Client mode only communicates with the target IP and port. When set to TCP Server, there is no need to enter an IP address. For other settings, you need to fill in the IP address of the other party to be connected. Enter the protocol port number at the port. The port numbers at both ends of the communication must be the same.

Socket B communicates with the server as a TCP Client and a UDP Client.

TCP connection password authentication: it only works under TCP server mode, verify the password of the TCP client which will be connected to RS485 TO WIFI/ETH.

Note: working in the TCP server mode, when enable it, the first data send by the TCP client to the server is password and enter, the default password is “admin” so the first data should be: 0x61 0x64 0x6D 0x69 0x6E 0x0D 0x0A (HEX).

5.1.7. **ETHERNET SETTING**

Figure Ethernet Setting

RS485 TO WIFI/ETH has one Ethernet port, this port can be work as LAN port or WAN port.

LAN port: it supports the data transmission between Ethernet to the serial or WIFI.

WAN port: RS485 TO WIFI/ETH can be used as secondary router which is convenient for user to network.
5.1.8. HTTPD CLIENT MODE

In HTTPD Client mode, set the relevant parameters of HTTP.

- **HTTP Header Set Mode**: new
- **HTTPD Server address**: 16.10.100.200
- **HTTPD Server port**: 80
- **HTTPD Request Type**: GET
- **HTTPD Header path**: /abcd

 Custom HTTP Header:

 Content-type: text/html; charset=utf-8

When HTTPD header set to be "old", use old setting method, that is to fill each header. When set to "new", use new setting method, the header can be user-defined (there can't have "enter" at the end).

![HTTPD Client](image)

Figure HTTPD Client Mode
Under the HTTPD client mode, the content of the protocol header, including: server address, server port, request type, header path, header Connection and header User-Agent.

5.1.9. DEVICE MANAGEMENT

Device management includes username / password settings, factory reset and software upgrade functions. Instr:

Restart: when user setting parameters in different webpage, click Apply to make sure it, but these parameters will be effect after restart and RS485 TO WIFI/ETH will reboot to fresh the original parameters.

5.2. AT COMMAND

5.2.1. SERIAL AT COMMAND

UART parameters: 57600/none/8/1.

AT command can be sent by the AT command software or by programming. Take SecureCRT as an example, change from the other mode to AT command mode there always be two steps.
Enter “+++” on the serial port (RS485), module receives and returns an “a”;

Enter “a” on the serial port (RS485), module receives and returns “+ok”, and enter the AT command.

Note: Fill “+++” and “a” need to achieve in the time to reduce the chance of entering command mode while working normally accidentally. Detail requirement are as follows:

Time requirement:
T1>the interval of serial port package
T2<300ms
T3<300ms
T5<3s

Change transparent transmission mode, HTTPD Client mode to AT command mode :
1. Serial device send “+++” to module continuously. Module received ‘+++’ then returned an “a” .

2. After receiving the ‘a’ returned by the module, the device must send another confirmation code ‘a’ to the module within 3 seconds.
3. The module will return ‘+ok’, and enter AT command mode.

Change AT command mode to transparent transmission mode:

1. Serial device send “AT+ENTM” to module.

2. After the module receive the commend, feedback “+ok”, then back to the previous working mode.

Note: The specific AT command requires a ENTER, but the "+++" and "a" sent by entering the AT command process do not need a ENTER.

In AT command mode, you can view all AT commands and descriptions of RS485 TO WIFI/ETH through the following help commands, as follows:

```
AT + H
```

Figure AT command mode

In order to enter the AT command mode to set parameters conveniently, our company provides "AT command software":

www.waveshare.com
Click “Open”, send "+++ a", receive the response "+ ok", then enter the AT command to be sent in the left operation area. After the setting is completed, click "AT + Z" to restart the module, and the parameter settings can be completed.

5.2.2. COMMAND TABLE

Based on the ASCII command, the Table of the AT command are as below:

- Tableat description:
 - < >: the content that have to be included
 - []: the part can be select

- Command:
 - AT+<CMD>[op][para- 1,para-2,para-3,para-4 ...]<CR>
 - AT+: command prefix
 - [op]: command operating code, parameters setting or query;
 - “=”: parameters setting
 - “NULL” : query
 - [para-n] : fill when setting the parameters
 - <CR>: end, enter, ASCII code, : 0x0a or 0x0d

Note: When echoing, the terminator is automatically converted to 0x0a0d. When entering a command, the "AT + <CMD>" characters are automatically echoed to uppercase, and the parameters remain unchanged.

- Response data
 - + <RSP> [op] [para- 1, para-2, para-3, para-4...] <CR> <LF> <CR> <LF>
+: the response prefix

RSP: response string; including:

Ok

Err

[op]: =

[para-n]: return parameters or the error code:

<CR>: ASCII code: 0x0d;

<LF>: ASCII code: 0x0a;

<table>
<thead>
<tr>
<th>Error</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Invalid command Tableat</td>
</tr>
<tr>
<td>-2</td>
<td>Invalid command</td>
</tr>
<tr>
<td>-3</td>
<td>Invalid Operator</td>
</tr>
<tr>
<td>-4</td>
<td>Invalid Parameters</td>
</tr>
<tr>
<td>-5</td>
<td>Operation not allowed</td>
</tr>
</tbody>
</table>

Error code

5.2.3. AT COMMAND

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Enable/Disable echo function (RS485 TO WIFI/ETH does not support)</td>
</tr>
<tr>
<td>ENTM</td>
<td>Enter transparent transmission mode</td>
</tr>
<tr>
<td>NETP</td>
<td>Query/Set Network protocol parameters</td>
</tr>
<tr>
<td>UART</td>
<td>Query/Set serial port parameters</td>
</tr>
<tr>
<td>UARTF</td>
<td>Enable/Disable auto-frame function</td>
</tr>
<tr>
<td>UARTFT</td>
<td>Query/Set auto-frame trigger time</td>
</tr>
<tr>
<td>UARTFL</td>
<td>Query/Set auto-frame trigger length</td>
</tr>
<tr>
<td>TMODE</td>
<td>Query/Set data transmission mode (transparent transmission mode or protocol mode)</td>
</tr>
<tr>
<td>WMODE</td>
<td>Query/Set WIFI mode (AP or STA)</td>
</tr>
<tr>
<td>WSKEY</td>
<td>Query/Set encryption parameters in STA mode</td>
</tr>
<tr>
<td>WSSID</td>
<td>Query/Set SSID of connected AP in STA mode</td>
</tr>
<tr>
<td>WSLK</td>
<td>Query the connection status in STA mode</td>
</tr>
<tr>
<td>WEBU</td>
<td>Query/Set Web Server username and password</td>
</tr>
<tr>
<td>WAP</td>
<td>Query/Set AP mode parameters</td>
</tr>
<tr>
<td>WAKEY</td>
<td>Query/Set encryption parameters in AP mode</td>
</tr>
<tr>
<td>MSLP</td>
<td>Set the module to enter low power mode, turn off WIFI</td>
</tr>
<tr>
<td>WSCAN</td>
<td>Search surrounding AP in STA mode</td>
</tr>
<tr>
<td>TCPLK</td>
<td>Query socket A TCP connection connect/disconnected</td>
</tr>
<tr>
<td>TCPDIS</td>
<td>Query/Set establish TCP connection enable/disable (Only take effect in</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>TCP Client mode)</td>
<td></td>
</tr>
<tr>
<td>WANN</td>
<td>Query/Set network parameters in STA mode (WAN interface parameters)</td>
</tr>
<tr>
<td>LANN</td>
<td>Query/Set network parameters in AP mode (LAN interface parameters)</td>
</tr>
<tr>
<td>TCPTO</td>
<td>Query/Set timeout re-connection time of socket A</td>
</tr>
<tr>
<td>MAXSK</td>
<td>Query/Set maximum TCP Clients in TCP Server work mode</td>
</tr>
<tr>
<td>TCPB</td>
<td>Enable/Disable socket B</td>
</tr>
<tr>
<td>TCPPTB</td>
<td>Query/Set Socket B port number</td>
</tr>
<tr>
<td>TCPADDB</td>
<td>Query/Set Socket B server address</td>
</tr>
<tr>
<td>TCPTOB</td>
<td>Query/Set timeout re-connection time of socket B</td>
</tr>
<tr>
<td>TCPB</td>
<td>Enable/Disable socket B</td>
</tr>
<tr>
<td>TCPPTB</td>
<td>Query/Set Socket B port number</td>
</tr>
<tr>
<td>TCPADDB</td>
<td>Query/Set Socket B server address</td>
</tr>
<tr>
<td>TCPTOB</td>
<td>Query/Set timeout re-connection time of socket B</td>
</tr>
<tr>
<td>EPHY</td>
<td>Enable/Disable Ethernet interface</td>
</tr>
<tr>
<td>RELO</td>
<td>Reset the module</td>
</tr>
<tr>
<td>FUDLX</td>
<td>Enable/Disable RS485</td>
</tr>
<tr>
<td>IDFIR</td>
<td>Enable / disable sending ID when the connection is first established</td>
</tr>
<tr>
<td>IDEVE</td>
<td>Enable / disable sending ID before each data packet</td>
</tr>
<tr>
<td>AABR</td>
<td>Enable/Disable RFC2217 function</td>
</tr>
<tr>
<td>DHCIDEN</td>
<td>Enable/Disable DHCP server function of LAN port</td>
</tr>
<tr>
<td>HIDESSID</td>
<td>Query/Set whether to hide SSID of RS485 TO WIFI/ETH in AP mode</td>
</tr>
<tr>
<td>DOMAIN</td>
<td>Query/Set web server domain name</td>
</tr>
<tr>
<td>Z</td>
<td>Restart the module</td>
</tr>
<tr>
<td>AT+FAPSTA</td>
<td>Enable/Disable AP+STA function</td>
</tr>
<tr>
<td>MID</td>
<td>Query module’s MID</td>
</tr>
<tr>
<td>VER</td>
<td>Query firmware version</td>
</tr>
<tr>
<td>H</td>
<td>Query help inTableation</td>
</tr>
<tr>
<td>WSQY</td>
<td>Query/Set RSSI threshold (percentage) to switch among three AP in STA mode</td>
</tr>
<tr>
<td>HTPMODE</td>
<td>Query/Set HTTP Client mode parameters configuration way (new/old)</td>
</tr>
<tr>
<td>HTTPURL</td>
<td>Query/Set HTTP Server address and port in HTTP Client mode (old)</td>
</tr>
<tr>
<td>HTTPP</td>
<td>Query/Set HTTP requesting method in HTTP Client mode (old)</td>
</tr>
<tr>
<td>HTTPPH</td>
<td>Query/Set HTTP header path in HTTP Client mode (old)</td>
</tr>
<tr>
<td>HTTPCN</td>
<td>Query/Set HTTP header connection in HTTP Client mode (old)</td>
</tr>
<tr>
<td>HTTPUA</td>
<td>Query/Set HTTP header User-Agent in HTTP Client mode (old)</td>
</tr>
<tr>
<td>HTTPSV</td>
<td>Query/Set HTTP Server address and port in HTTP Client mode (new)</td>
</tr>
<tr>
<td>HTTPPT</td>
<td>Query/Set HTTP requesting method in HTTP Client mode (new)</td>
</tr>
<tr>
<td>HTTPURL</td>
<td>Query/Set HTTP URL in HTTP Client mode (new)</td>
</tr>
<tr>
<td>HTTPHEAD</td>
<td>Query/Set HTTP header in HTTP Client mode (new)</td>
</tr>
<tr>
<td>HTTPSCEN</td>
<td>Query/Set HTTPD Client connection mode (long/short)</td>
</tr>
<tr>
<td>HTTPSCT</td>
<td>Query/Set HTTPD Client Short Connection Timeout (3-65535s)</td>
</tr>
<tr>
<td>REGEN</td>
<td>Query/Set registration package type</td>
</tr>
<tr>
<td>REGTCP</td>
<td>Query/Set registration packet sending type</td>
</tr>
<tr>
<td>WTPWR</td>
<td>Query/Set transmitting power</td>
</tr>
<tr>
<td>REGCLUD</td>
<td>Query/Set WAVESHARE Cloud ID and password</td>
</tr>
<tr>
<td>FVER</td>
<td>Query/Set module software version (N-Ver、Z-Ver)</td>
</tr>
<tr>
<td>REGWAVESHARE</td>
<td>Query/Set custom registration package content</td>
</tr>
<tr>
<td>TCDDNPEN</td>
<td>Enable/Disable socket distribution function</td>
</tr>
<tr>
<td>HEARTEN</td>
<td>Enable/Disable custom heartbeat packet function</td>
</tr>
<tr>
<td>HEARTFTP</td>
<td>Query/Set custom heartbeat packet sending direction</td>
</tr>
</tbody>
</table>
This AT command set is for onboard WIFI module, which can be used for query, setting WIFI serial server parameters.

RS485 TO WIFI/ETH can work in AP mode or STA mode, and the WIFI parameters need to be set with different command.

5.2.4.1. AT+E

Function: enable/ disable echo function

Tableat:

AT+E<CR>
+ok<CR><LF><CR><LF>

From the transparent mode to AT command, module default enable echo function, after the first time user enter the AT+E, disable the echo function, the second time user enter the ”AT+E” enable the echo function.

5.2.4.2. AT+ENTM

Function: enter the transparent transmission mode.

Tableat:

AT+ENTM<CR>
+ok<CR><LF><CR><LF>

After the command is executed correctly, the module switches from command mode to transparent transmission mode. If need to enter the command mode again, enter ”+++” and the confirmation code to return to the command mode.

5.2.4.3. AT+NETP
Function: Query/Set network protocol parameters

Table:
Query : AT+NETP<CR>
+ok=<protocol,CS,port,IP><CR><LF><LF>
Setting: AT+NETP=<protocol,CS,port,IP><CR>
+ok<CR><LF><CR><LF>

Parameters:
protocol: protocol type, including
TCP
UDP
CS: Client or server, including
SERVER: server
CLIENT: client
port: protocol port, decimal number, less than 65535

Note: when in TCP Server and UDP Server mode, cannot be 80(HTTP port), 8000(websocket port), 49000(WAVESHARE-link port).

IP: when module works as TCP client or UDP, server address(can be a IP address or a domain name of server). After restarting the module, parameters take effect.

5.2.4.4. AT+UART

Function: Query/Set network protocol parameters

Table:
Query : AT+NETP<CR>
+ok=<protocol,CS,port,IP><CR><LF><LF>
Setting: AT+NETP=<protocol,CS,port,IP><CR>
+ok<CR><LF><CR><LF>

Parameters:
protocol: protocol type, including
TCP
UDP
CS: Client or server, including
SERVER: server
CLIENT: client
port: protocol port, decimal number, less than 65535
RS485 TO WIFI/ETH

Note: when in TCP Server and UDP Server mode, cannot be 80(HTTP port), 8000(websocket port), 49000(WAVESHARE-link port).

IP: when module works as TCP client or UDP, server address(can be a IP address or a domain name of server). After restarting the module, parameters take effect.

5.2.4.5. AT+UARTF

Function: Query/Set network protocol parameters

Tableat:
Query : AT+NETP<CR>
+ok=<protocol,CS,port,IP><CR><LF><CR><LF>
Setting: AT+NETP=<protocol,CS,port,IP><CR>
+ok<CR><LF><CR><LF>

Parameters:
protocol: protocol type, including
TCP
UDP
CS: Client or server, including
SERVER: server
CLIENT: client
port: protocol port, decimal number, less than 65535

Note: when in TCP Server and UDP Server mode, cannot be 80(HTTP port), 8000(websocket port), 49000(WAVESHARE-link port).

IP: when module works as TCP client or UDP, server address(can be a IP address or a domain name of server). After restarting the module, parameters take effect.

5.2.4.6. AT+UARTFT

Function: Query/Set auto-frame trigger time

Tableat:
Query : AT+UARTFT<CR>
+ok=<time><CR><LF><CR><LF>
Setting: AT+UARTFT=<time><CR>
+ok<CR><LF><CR><LF>

Parameters:
time: auto-frame trigger time, unit is ms. Range: 100~10000.

5.2.4.7. AT+UARTFL
Function: Query/Set auto-frame trigger time
Tableat:
Query : AT+ UARTFT<CR>
+ok=<time><CR>< LF ><CR>< LF >
Setting: AT+ UARTFT=<time><CR>
+ok<CR>< LF ><CR>< LF >
Parameters:
 time: auto-frame trigger time, unit is ms. Range: 100~10000.

5.2.4.8. AT+TMODE

Function: Query/Set data transmission mode (transparent transmission mode or protocol mode) Tableat:
Query : AT+TMODE<CR>
+ok=<tmode><CR>< LF ><CR>< LF >
Setting: AT+ TMODE=<tmode><CR>
+ok<CR>< LF ><CR>< LF >
Parameters:
 tmode: data transmission mode, including
 ♦ Through: transparent transmission mode
 ♦ Agreement: serial command mode
 ♦ Modbus: Modbus TCP<>Modbus RTU mode
 ♦ Httpdclient: HTTPD Client mode
After restarting the module, parameters take effect.

Note: After power on, works in transparent transmission mode by default.

5.2.4.9. AT+WMODE

Function: Query/Set WIFI mode (AP or STA)
Tableat:
Query : AT+WMODE<CR>
+ok=<mode><CR>< LF ><CR>< LF >
Setting: AT+ WMODE=<mode><CR>
+ok<CR>< LF ><CR>< LF >

Parameters:

- mode: WiFi mode, including
 - AP: Wireless access point mode
 - STA: Wireless terminal mode

After restarting the module, parameters take effect.

5.2.4.10. AT+WSKEY

Function: Query/Set encryption parameters in STA mode.

Table:

Query: AT+WSKEY<CR>
+ok=<auth,encry,key><CR>< LF ><CR>< LF >

Setting: AT+ WSKEY=< auth,encry,key><CR>
+ok<CR>< LF ><CR>< LF >

Parameters:

- auth: Authentication mode, including
 - OPEN
 - SHARED
 - WPAPSK
 - WPA2PSK

- encry: Encryption algorithm, including
 - NONE: valid when auth=OPEN.
 - WEP-H: valid when auth=OPEN or SHARED (WEP, HEX)
 - WEP-A: valid when auth=OPEN or SHARED (WEP, ASCII)
 - TKIP: valid when auth= WPAPSK/WPA2PSK
 - AES: valid when auth= WPAPSK/WPA2PSK
key: password, when encry=WEP-H, password is hexadecimal, 10 or 26 digits; when encry=WEP-A, password is ASCII, 5 or 13 digits; when WPA-PSK and WPA2-PSK, password is ASCII, 8~63 digits.

This parameter only valid in STA mode, after restarting the module, parameters take effect. But can also be set in AP mode.

5.2.4.11. AT+WSSSID

Function: Query/Set AP’s SSID in STA mode.

Tableat:
Query : AT+WSSSID<CR>
+ok=<ap’s ssid><CR>< LF ><CR>< LF >

Setting: AT+WSSSID=<ap’s ssid><CR>
+ok<CR>< LF ><CR>< LF >

Parameters:
- ap’s ssid: AP’s SSID

This parameter only valid in STA mode, after restarting the module, parameters take effect. But can also be set in AP mode.

5.2.4.12. AT+WSLK

Function: Query the link status in STA mode (only available in STA mode)

Tableat:
Query : AT+ WSLK<CR>
+ok=<ret><CR>< LF ><CR>< LF >

Parameters:
- ret:
- If not connected: Returns "Disconnected".
- If connected: Returns "SSID of AP (MAC of AP)" This parameter
only valid in STA mode.

5.2.4.13. AT+WEBU
Function: Query/Set web server username and password.
Tableat:
Query: AT+WEBU<CR>
+ok=<WAVESHARE, password><CR><LF><CR><LF>
Setting: AT+WEBU=< WAVESHARE, password ><CR>
+ok<CR><LF><CR><LF>
Parameters:
WAVESHARE: username
password: password.

5.2.4.14. AT+WAP
Function: Query/Set parameters in AP mode
Tableat:
Query: AT+WAP<CR>
+ok=<wifi_mode, ssid, channel><CR><LF><CR><LF>
Setting: AT+ WAP=<wifi_mode, ssid, channel><CR>
+ok<CR><LF><CR><LF>
Parameters:
- wifi_mode: WiFi mode, including
 - 11BG
 - 11B
 - 11G
 - 11BGN
RS485 TO WIFI/ETH

- 11N

- ssid: SSID in AP mode

- channel: WIFI channel, AUTO or CH1~CH11

 This parameter only valid in AP mode, after restarting the module, parameters take effect. But can also be set in STA mode.

 AT+WAP=11BGN,SOCKAB+STA-TEST,Auto

5.2.4.15. AT+WAKEY

Function: Query/Set encryption parameters in AP mode

Tableat:

Query : AT+WAKEY<CR>
+ok=<auth,encry,key><CR><LF>

Setting: AT+WAKEY=< auth,encry,key><CR>
+ok<CR><LF>

Parameters:

- auth: Authentication mode, including
 - OPEN
 - SHARED
 - WPAPSK
 - WPA2PSK

- encry: Encryption algorithm, including
 - NONE: valid when auth=OPEN
 - WEP- H: valid when auth=OPEN or SHARED (WEP, HEX)
 - WEP-A: valid when auth=OPEN or SHARED (WEP, ASCII)
 - TKIP: valid when auth= WPAPSK/WPA2PSK.
 - AES: valid when auth= WPAPSK/WPA2PSK
 - TKIPAES: valid when auth= WPAPSK/WPA2PSK

 key: password, when encry=WEP- H, password is hexadecimal, 10 or 26 digits; when encry=WEP-A, password is ASCII, 5 or 13 digits; when WPA- PSK and WPA2- PSK, password is ASCII, 8~63 digits.

 This parameter only valid in AP mode, after restarting the module, parameters take effect. But can also be set in STA mode.
5.2.4.16. AT+MSLP

Function: Query/Set encryption parameters in AP mode

Tableat:
Query : AT+WAKEY<CR>
+ok=<auth,encry,key><CR><LF><CR><LF>
Setting: AT+ WAKEY=< auth,encry,key><CR>
+ok<CR><LF><CR><LF>

Parameters:
auth: Authentication mode, including
OPEN
SHARED
WPAPSK
WPA2PSK
encry: Encryption algorithm, including
NONE: valid when auth=OPEN
WEP- H: valid when auth=OPEN or SHARED (WEP, HEX)
WEP-A: valid when auth=OPEN or SHARED (WEP, ASCII)
TKIP: valid when auth= WPAPSK/WPA2PSK.
AES: valid when auth= WPAPSK/WPA2PSK
TKIPAES: valid when auth= WPAPSK/WPA2PSK
key: password, when encry=WEP- H, password is hexadecimal, 10 or 26 digits; when encry=WEP-A, password is ASCII, 5 or 13 digits; when WPA- PSK and WPA2- PSK, password is ASCII, 8~63digits.
This parameter only valid in AP mode, after restarting the module, parameters take effect. But can also be set in STA mode.

5.2.4.17. AT+WSCAN

Function: Search around AP

Tableat:

AT+ WSCAN<CR>
+ok=<ap_site><CR><LF><CR><LF>

Parameters:
ap_site: Searched APs
The first line returned is "RSSI, SSID, BSSID, Channel, Encryption, Authentication", which are the signal strength, network name, MAC address, channel, authentication mode, and encryption algorithm.

5.2.4.18. AT+TCPLK

Function: Query whether TCP connection is established

Tableat:

AT+ TCPLK<CR>

+ok=<sta><CR>< LF >

Parameters:

sta.: Returns whether TCP connection is established, for example:

- on, TCP connection is established
- off, TCP connection is not established

5.2.4.19. AT+TCPDIS

Function: Connect / Disconnect TCP (only valid when TCP Client)

Tableat:

Query : AT+ TCPDIS <CR>

+ok=<sta.><CR>< LF >

Setting: AT+ TCPDIS=<on/off><CR>

+ok<CR>< LF >

Parameters:

When querying, sta.: Returns whether the TCP Client is linkable, for example on, connectable

off, not connectable

When setting, "off" sets the module as unlinkable. Immediately after the command is completed, the module disconnects the link and does not reconnect."On" sets the module to a linkable state. After the command is completed, the module will immediately reconnect to the server.
5.2.4.20. AT+WANN

Function: Query/Set WAN Setting, only valid in STA mode.
Tableat:
Query : AT+WANN<CR>
+ok=<mode,address,mask,gateway><CR><LF><CR><LF>
Setting: AT+ WANN=< mode,address,mask,gateway ><CR>
+ok<CR><LF><CR><LF>
Parameters:
 mode: IP mode of WAN, for example
 static, static IP
 DHCP, dynamic IP
 address: : WAN IP address
 mask: WAN subnet mask
 gateway: WAN gateway address

5.2.4.21. AT+LANN

Function: Query/Set LAN settings, only valid in AP mode
Tableat:
Query : AT+LANN<CR>
+ok=<address,mask ><CR><LF><CR><LF>
Setting: AT+ LANN=<address,mask ><CR>
+ok<CR><LF><CR><LF>
Parameters:
 address: : LAN IP address
 mask: LAN subnet mask
Note: The address of the WAN port of the module viewed by WANN and the address of the LAN port of the module viewed by LANN. The two IPs cannot be set on the same network segment, otherwise the module does not work properly.

5.2.4.22. AT+TCPTO

Function: Query/Set TCP timeout
Tableat:
Query : AT+ TCPTO<CR>
+ok=<time><CR><LF><CR><LF>
Setting: AT+ TCPTO=<time ><CR>
+ok<CR>< LF ><CR>< LF >

Parameters:
 time.: TCP timeout, <= 600 (600s), >=0 (0 means no timeout), default is 0.
 TCP timeout: The module TCP channel starts counting when no data is received, and clears the count when data is received. If the timing exceeds the TCPTO time, the connection is disconnected. When the module works on the TCP Client, it will actively reconnect to TCP Server. When as a TCP server, TCP client needs to actively reconnect.

5.2.4.23. AT+MAXSK

Function: Query /Set the maximum number of TCP connections

Tableat:
Query : AT+ MAXSK<CR>
+ok=<num><CR>< LF ><CR>< LF >
Setting: AT+ MAXSK =<num ><CR>
+ok<CR>< LF ><CR>< LF >

Parameters:
 num: maximum number of TCP connections, range: 1~24, default is 24.
 When set to TCP Server, the module can support a maximum of 24 TCP connections. If users do not need so many connections, can set to reduce appropriately.

5.2.4.24. AT+TCPB

Function: Enable/Disable socket B.

Tableat:
Query : AT+TCPB <CR>
+ok=<sta.><CR>< LF ><CR>< LF >
Setting: AT+ TCPB=<on/off><CR>
+ok<CR>< LF ><CR>< LF >

Parameters:
 When querying, sta.: Returns whether socket B is enabled.
on, enable
off, disable

After restarting the module, parameters take effect.

5.2.4.25. AT+TCPPTB

Function: Query/Set TCPB port number

Tableat:

Query : AT+TCPPTB <CR>
 +ok=<port><CR>< LF ><CR>< LF >

Setting: AT+ TCPPTB=<port><CR>
 +ok<CR>< LF ><CR>< LF >

Parameters:

- port: Protocol port, decimal number, less than 65535

After restarting the module, parameters take effect.

5.2.4.26. AT+TCPADDB

Function: Query/Set TCPB server address

Tableat:

Query : AT+TCPADDB <CR>
 +ok=<add><CR>< LF ><CR>< LF >

Setting: AT+ TCPADDB=<add><CR>
 +ok<CR>< LF ><CR>< LF >

Parameters:

- add: TCPB server address (server’s IP address, or a domain name)

After restarting the module, parameters take effect.
5.2.4.27. AT+TCP TOB

Function: Query/Set TCPB timeout

Tableat:
Query: AT+ TCPTOB<CR>
+ok=<time><CR><LF><CR><LF>
Setting: AT+ TCPTOB=<time><CR>
+ok<CR><LF><CR><LF>

Parameters:

time. : TCPB timeout, <= 600 (600s), >=0 (0 means no timeout), default is 0.

5.2.4.28. AT+TCP LKB

Function: Query whether TCPB connection is established

Tableat:
AT+ TCPLKB<CR>
+ok=<sta><CR><LF><CR><LF>

Parameters:

sta.: returns whether TCOB is established.

on, established

off, not established

5.2.4.29. AT+EPHY

Function: Query whether TCPB connection is established

Tableat:
AT+ TCPLKB<CR>
+ok=<sta><CR><LF><CR><LF>

Parameters:

sta.: returns whether TCOB is established.

on, established

off, not established
5.2.4.30. AT+FUDLX

Function: Enable/Disable RS485

Tableat:
AT+FUDLX=on/off<CR>
+ok<CR>< LF ><CR>< LF >

This command enables or disables the RS485 interface. By default, RS485 is enabled, and the 485 control pin is RTS. This command takes effect after restoring factory settings.

5.2.4.31. AT+AABR

Function: Enable/Disable RFC2217 function

Tableat:
AT+AABR=on/off<CR>
+ok<CR>< LF ><CR>< LF >

This command enables or disables synchronization (RFC2217) function, default is enabled.

5.2.4.32. AT+DHCPDEN

Function: Enable/Disable RFC2217 function

Tableat:
AT+AABR=on/off<CR>
+ok<CR>< LF ><CR>< LF >

This command enables or disables synchronization (RFC2217) function, default is enabled.

5.2.4.33. AT+HIDESSID

Function: Enable/Disable RFC2217 function

Tableat:
AT+AABR=on/off<CR>
+ok<CR>< LF ><CR>< LF >

This command enables or disables synchronization (RFC2217) function, default is enabled.
5.2.4.34. AT+DOMAIN
Function: Query/Set web server domain name

Tableat:

Query : AT+ DOMAIN<CR>
+ok=<name><LF>><CR><LF>

Setting: AT+ DOMAIN=<name><CR>
+ok<LF><CR><LF>

Parameters:

 name: web server domain name

5.2.4.35. AT+RELD
Function: Reset the module

Tableat:

AT+ RELD<CR>
+ok=rebooting...<CR><LF><CR><LF>

This command restores the factory settings of the module, then the module will restart automatically.

5.2.4.36. AT+Z
Function: restart the module

Tableat:

AT+ Z<CR>

Module restarts.

5.2.4.37. AT+MID
Function: Query module’s MID

Tableat:

Query : AT+MID<CR>
+ok=<module_id><LF><LF>

Parameters:

 module_id: module MID, Tableat
 ➢ A11-ymmdnnnn
yymmdd: Represents the production date, year, month and day
nmmm: Indicates the production serial number

5.2.4.38. AT+VER
Function: Query firmware version
Tableat:
Query : AT+VER<CR>
+ok=<ver><CR><LF><CR><LF>
Parameters:
ver: returns firmware version of module.

5.2.4.39. AT+H
Function: Help command
Tableat:
Query : AT+H<CR>
+ok=<commod help><CR><LF><CR><LF>
Parameters: commod help: Command line instructions

5.2.4.40. AT+WSQY
Function: Query/Set RSSI threshold(percentage) to switch among three AP in STA mode
Tableat:
Query : AT+ WSQY<CR>
+ok=<ret><CR><LF><CR><LF>
Setting: AT+ WSQY=< ret><CR>
+ok<CR><LF><CR><LF>
Parameters:
ret:
- The percentage of RSSI threshold. If the RSSI threshold is 50%, the setting should be “AT + WSQY = 50 <CR>”

Note: If set to 100, the module will not switch WIFI network automatically. If the customer uses only one STA parameter, be sure to set this parameter to 100.

5.2.4.41. AT+HTPMODE
Function: Query/Set HTTP Client mode parameters configuration way (new/old)
Tableat:
Query: AT+HTPMODE<CR>
+ok=<type><CR>< LF >>CR>< LF >
Setting: AT+HTPMODE=<type><CR>
+ok<CR>< LF >>CR>< LF >
Parameters:
 type: Authentication mode, including
 new: New HTTP Client mode parameters configuration way
 old: old HTTP Client mode parameters configuration way

This parameter is only valid in HTTPD Client mode. Takes affect after restarting the module. But this parameter can also be set in other modes.

5.2.4.42. AT+HTTPURL
Function: Query/Set IP address and port of HTTP server (old).
Tableat:
Query: AT+HTTPURL<CR>
+ok=<ip>,<port><CR>< LF >>CR>< LF >
Setting: AT+HTTPURL=<ip>,<port><CR>
+ok<CR>< LF >>CR>< LF >
Parameters:
 ➢ ip: IP address of HTTP server.
 ➢ port: port number of HTTP server.

5.2.4.43. AT+HTTPTP
Function: Query/Set HTTP requesting type in HTTP Client mode (old).
Tableat:
Query: AT+HTTPTP<CR>
+ok=<Type><CR>< LF >>CR>< LF >
Setting: AT+HTTPTP=<Type><CR>
+ok<CR>< LF >>CR>< LF >
Parameters:
 ➢ Type: HTTP requesting type, including
 ✷ GET
 ✷ PUT
POST

5.2.4.44. AT+HTTPPH

Function: Query/Set HTTP header path (old).
Tableat:
Query : AT+HTTPPH<CR>
+ok=<path><CR><LF><CR><LF>
Setting: AT+HTTPPH=<path><CR>

+ok<CR><LF><CR><LF>
Parameters:
path: HTTP header path.

5.2.4.45. AT+HTTPCN

Function: Query/Set HTTP header connection mode (old).
Tableat:
Query : AT+HTTPCN<CR>
+ok=<Connection><CR><LF><CR><LF>
Setting: AT+HTTPCN=<Connection><CR>
+ok<CR><LF><CR><LF>
Parameters:
Connection: HTTP header connection.

5.2.4.46. AT+HTTPUA

Function: Query/Set HTTP header User-Agent (old).
Tableat:
Query : AT+HTTPUA<CR>
+ok=<User-Agent><CR><LF><CR><LF>
Setting: AT+HTTPUA=<User-Agent><CR>
+ok<CR><LF><CR><LF>
Parameters:
 User-Agent: HTTP header User-Agent.
5.2.4.47. AT+HTPSV

Function: Query/Set HTTP server address and port number (new).

Tableat:
Query : AT+ HTPSV<CR>
+ok=<ip>,<port><LF><CR><LF>
Setting: AT+ HTPSV=<ip>,<port><CR>
+ok<CR><LF><CR><LF>

Parameters:
ip: HTTP server IP address
port: HTTP server IP port
This parameter is only valid in HTTPD Client mode, takes affect after restarting the module. But can also be set in other modes.

5.2.4.48. AT+HTPTP

Function: Query/Set HTTP requesting type (new).

Tableat:
Query : AT+ HTPTP<CR>
+ok=<Type><CR><LF><CR><LF>
Setting: AT+ HTPTP=<Type><CR>
+ok<CR><LF><CR><LF>

Parameters:
Type: HTTP requesting type, including
GET
PUT
POST
This parameter is only valid in HTTPD Client mode, takes affect after restarting the module. But can also be set in other modes.

5.2.4.49. AT+HTPURL

Function: Query/Set HTTP URL (new).

Tableat:
Query : AT+ HTPURL<CR>
+ok=<path><CR><LF><CR><LF>
Setting: AT+ HTPURL=<path><CR>
RS485 TO WIFI/ETH

+ok<CR>< LF ><CR>< LF >
Parameters:
 - path: HTTP requesting path.

5.2.4.50. AT+HTPHEAD
Function: Query/Set HTTP header (new).
Tableat:
Query : AT+ HTPHEAD<CR>

+ok=<head><CR>< LF ><CR>< LF >
Setting: AT+ HTPHEAD=<head><CR>
+ok<CR>< LF ><CR>< LF >
Parameters:
 - head: HTTP header content. “Enter” in header should be replaced by “<<CRLF>>”, up to 200 bytes.

5.2.4.51. AT+REGEN
Function: Query/Set registration package type
Tableat:
Query : AT+ REGEN<CR>
+ok=<mode><CR>< LF ><CR>< LF >
Setting: AT+ REGEN=<mode><CR>
+ok<CR>< LF ><CR>< LF >
Parameters:
 - mode: registration packet type, including
 - mac: registration package is MAC address
 - cloud: WAVESHARE Cloud
 - WAVESHARE: user custom registration package
 - off: Disable registration package function For example: AT+REGEN=MAC

5.2.4.52. AT+REGTCP
Function: Query/Set registration package sending type
Tableat:
Query : AT+ REGTCP<CR>
RS485 TO WIFI/ETH

+ok=<type><CR><LF><CR><LF>
Setting: AT+ REGTCP=<type><CR>
+ok<CR><LF><CR><LF>
Parameters:
 type: registration package sending type, including
 first: sending when establish a connection
 every: sending when data is sent every time

5.2.4.53. AT+WTPWR

Function: Set module’s transmit power
Tableat:
Query : AT+ WTPWR <CR>
+ok=<sta.><CR><LF><CR><LF>
Setting: AT+ WTPWR =<sta><CR>
+ok<CR><LF><CR><LF>
Parameters:
 sta.: module’s transmit power, ranging from 0 to 100. Default is 100

5.2.4.54. AT+REGCLOUD

Function: Query/Set WAVESHARE Cloud ID and password.
Tableat:
Query : AT+REGCLOUD<CR>
+ok=<name,password><CR><LF><CR><LF>
Setting: AT+REGCLOUD=<name,password><CR>
+ok<CR><LF><CR><LF>
Parameters:
 name : device ID, 20 digits.
 password: password, up to 8 digits.
For example: AT+REGCLOUD=000042190000000600, 123456

5.2.4.55. AT+REGWAVESHARE

Function: Query/Set user custom registration package content
Tableat:
Query : AT+REGWAVESHARE<CR>
+ok=WAVESHARE<CR><LF><CR><LF>
Setting: AT+REGWAVESHARE=WAVESHARE<CR>
+ok<CR><LF><CR><LF>
Parameters:
 WAVESHARE: Length is limited to 40 characters, HEX Tableat.
 For example: set the registration package content to: www.waveshare.com, “77 77 77 2E 75 73 72 2E 63 6E” in HEX

AT+REGWAVESHARE=777772E7573722E636E

5.2.4.56. AT+TCPDPEN

Function: Enable/Disable socket distribution function

Tableat:

Query: AT+TCPDPEN <CR>
+ok=<sta.><CR><LF><CR><LF>

Setting: AT+TCPDPEN =<on/off><CR>
+ok<CR><LF><CR><LF>

Parameters:

➤ When querying, sta.: returns whether socket distribution function is enabled, including
 ♦ on, enabled
 ♦ off, disabled

Parameter takes affect after restarting the module.

5.2.4.57. AT+HEARTEN

Function: Enable/Disable heartbeat package function.

Tableat:

Query: AT+HEARTEN <CR>
+ok=<sta.><CR><LF><CR><LF>

Setting: AT+HEARTEN =<on/off><CR>
+ok<CR><LF><CR><LF>

Parameters:

➤ When querying, sta.: returns whether heartbeat package is enabled. including
RS485 TO WIFI/ETH

✧ on, heartbeat package function is enabled
✧ off, heartbeat package function is disabled
Parameter takes affect after restarting the module.

5.2.4.58. AT+HEARTTP
Function: Query/Set heartbeat package sending type.
Tableat:
Query: AT+HEARTTP <CR>

+ok=<sta.><CR><LF><CR><LF>
Setting: AT+HEARTTP =<NET/COM><CR>
+ok<CR><LF><CR><LF>
Parameters:
 When querying, sta. : returns heartbeat package sending type, including
 NET, heartbeat package is sent to network
 COM, heartbeat package is sent to serial port
Parameter takes affect after restarting the module.

5.2.4.59. AT+HEARTDT
Function: Query/Set heartbeat package data
Tableat:
Query: AT+HEARTDT<CR>
+ok=<WAVESHARE><CR><LF><CR><LF>
Setting: AT+HEARTDT=<WAVESHARE><CR>
+ok<CR><LF><CR><LF>
Parameters:
 WAVESHARE: Length is limited to 40 characters. HEX Tableat.
 For example: heartbeat package data: www.WAVESHARE.cn, “77 77 77 2E 75 73 72 2E 63 6E” in HEX.
 AT+REGWAVESHARE=777772E7573722E636E

5.2.4.60. AT+HEARTTM
Function: Query/Set heartbeat package sending interval
Tableat:

www.waveshare.com 77 / 81 www.waveshare.com/wiki
Query: AT+ HEARTTM<CR>
+ok=<time><CR><LF><LF>
Setting: AT+ HEARTTM=<time><CR>
+ok<CR><LF><CR><LF>
Parameters:
- time: heartbeat package sending interval, 1~65535s, default is 30s.

5.2.4.61. AT+REBOOTEN
Function: Enable/Disable timing restart function

Tableat:
Query : AT+REBOOTEN<CR>
+ok=<sta.><CR><LF><CR><LF>
Setting: AT+REBOOTEN=<on/off><CR>
+ok<CR><LF><CR><LF>
Parameters:
When querying, sta. : returns whether timing restart function is enabled, including
on, timing restart function is enabled
off, timing restart function is disabled Parameter takes affect after restarting the
module .

5.2.4.62. AT+REBOOTT
Function: Query/Set timing restart time

Tableat:
Query : AT+ REBOOTT<CR>
+ok=<time><CR><LF><CR><LF>
Setting: AT+ REBOOTT=<time><CR>
+ok<CR><LF><CR><LF>
Parameters:
- time.: timing restart time, 1-720h, default is 24h.
5.2.4.63. AT+TIMEOUTEN

Function: Enable/Disable timeout restart function
Tableat:
Query : AT+TIMEOUTEN<CR>
+ok=<sta.><CR>< LF ><CR>< LF >
Setting: AT+TIMEOUTEN=<on/off><CR>
+ok<CR>< LF ><CR>< LF >
Parameters:
 When querying, sta. : returns whether timeout restart function is enabled, including
 on, timeout restart function is enabled
 off, timeout restart function is disabled

Parameter takes affect after restarting the module .

5.2.4.64. AT+TIMEOUTT

Function: Query/Set timeout restart time
Tableat:
Query : AT+TIMEOUTT<CR>
+ok=<time><CR>< LF ><CR>< LF >
Setting: AT+TIMEOUTT=<time ><CR>
+ok<CR>< LF ><CR>< LF >
Parameters:
 time. : timeout restart time, 60-65535s, default is 3600s .

5.2.4.65. AT+FAPSTA

Function: Enable/Disabled AP+STA function
Tableat:
AT+FAPSTA=on/off<CR>
+ok<CR>< LF ><CR>< LF >
This command enables or disables AP+STA function, default is disabled. Parameter takes affect
after restarting the module.

5.2.4.66. AT+HTTPSCEN

www.waveshare.com 79 / 81 www.waveshare.com/wiki
Function: Query/Set HTTPD Client mode: long/short
Tableat:
Query : AT+HTTPSCEN <CR>
+ok=<mode><CR>< LF ><CR>< LF >
Setting: AT+HTTPSCEN =<mode><CR>
+ok<CR>< LF ><CR>< LF >
Parameters:
 mode: HTTPD Client mode, including
 long: long connection mode
 short: short connection mode

Parameter takes affect after restarting the module.

5.2.4.67. AT+MODBPOLLEN

Function: Enable/Disable Modbus polling function
Tableat:
AT+MODBPOLLEN =on/off<CR>
+ok<CR>< LF ><CR>< LF >
Default is “off”. Parameter takes affect after restarting the module.

5.2.4.68. AT+UPDATE

Function: Query/Set remote upgrade parameters.
Tableat:
Query : AT+UPDATE<CR>
+ok=<state, server address, server port, interval ><CR>< LF ><CR>< LF >
Setting: AT+UPDATE =< state, server address, server port, interval ><CR>
+ok<CR>< LF ><CR>< LF >
Parameters:
 state: status,
 on/off
 server address: server address
 default: ycsj1.WAVESHARE.cn
 server port: server port
 Default: 30001
interval: reporting interval
Default is 30min, maximum time interval (max): 120min
Parameter takes affect after restarting the module.

5.2.4.69. AT+MONITOR
Function: Query/Set remote monitoring parameters
Tableat:
Query : AT+ MONITOR <CR>
+ok=< state , interval ><CR>< LF ><CR>< LF >
Setting: AT+ MONITOR=< state , interval ><CR>
+ok <CR>< LF ><CR>< LF >
Parameters:
➢ state: status
➢ on/off
➢ interval: reporting interval
➢ default is 10min, maximum time interval (max): 120min
Parameter takes affect after restarting the module.